If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(m^2)+2m=0
a = 1; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·1·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*1}=\frac{-4}{2} =-2 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*1}=\frac{0}{2} =0 $
| 66=3(r-63) | | r5+14=21 | | 19-m=-7 | | 25+75x=100+50x | | r5+ 14=21 | | y−100–1=0 | | 9(d-93)=27 | | (-3-2x)^2-4x^2-3x-17=-3 | | 2(4x+2)=15 | | 9(d−93)=27 | | 3=d/5−2 | | 5z+1÷3=7 | | 7f+16=93 | | h−82/2=9 | | z/7−1=2 | | 3x+9/10x-40=0 | | 18=2p+2 | | 1/2(2-4x)=1/4x | | 19=g/3+15 | | −3n=15 | | 2x+18=53 | | 3x2−6x=29 | | –3=v−62–7 | | 2s+8=12 | | 10−2j=6 | | 35=−7a+14 | | b/3+12=16 | | 2x-13-18+2x=17 | | 5=17-3d | | y/2+13=23 | | 5=17−3d | | 27=u/4-15 |